Si se quiere calcular los valores propios de una matriz dada y ésta es pequeña, se puede calcular simbólicamente usando el polinomio característico. Sin embargo, a menudo resulta imposible para matrices extensas, caso en el que se debe usar un método numérico.
Cálculo simbólico
- Cálculo de los valores propios
Una herramienta importante para encontrar valores propios de matrices cuadradas es el polinomio característico: decir que λ es un valor propio de A es equivalente a decir que el sistema de ecuaciones linealesA v = λ v → A v - λ v = 0 (factorizando por v queda) (A - λI) v = 0 (donde I es la matriz identidad) tiene una solución no nula v (un vector propio), y de esta forma es equivalente al determinante:
La función p(λ) = det(A - λI) es un polinomio de λ pues los determinantes se definen como sumas de productos. Éste es el polinomio característico de A: los valores propios de una matriz son los ceros de supolinomio característico.
Todos los valores propios de una matriz A pueden calcularse resolviendo la ecuación
.

Si A es una matriz n×n, entonces
tiene grado n y A tiene como máximo n valores propios.

El teorema fundamental del álgebra dice que esta ecuación tiene exactamente n raíces (ceros), teniendo en cuenta su multiplicidad. Todos los polinomios reales de grado impar tienen un número real como raíz, así que para n impar toda matriz real tiene al menos valor propio real. En el caso de las matrices reales, para n par e impar, los valores propios no reales son pares conjugados.
0 comentarios:
Publicar un comentario