El espectro es invariante bajo transformaciones semejantes: las matrices A y P-1AP tienen los mismos valores propios para cualquier matriz A y cualquier matriz invertible P. El espectro es también invariante a latrasposición de las matrices: A y A T tienen los mismos valores propios.
Dado que una transformación lineal en espacios de dimensiones finitas es biyectiva si y sólo si es inyectiva, una matriz es invertible si y sólo si cero no es un valor propio de la matriz.
Otras consecuencias de la descomposición de Jordan son:
  • una matriz es matriz diagonalizable si y sólo si las multiplicidades geométrica y algebraica coinciden para todos sus valores propios. En particular una matriz n×n que tiene n valores propios diferentes es siempre diagonalizable;
  • Dado que la traza, o la suma de elementos de la diagonal principal de una matriz se preserva en la equivalencia unitaria, la forma normal de Jordan constata que es igual a la suma de sus valores propios.
  • De forma similar, dado que los valores propios de una matriz triangular son las entradas de la diagonal principal su determinante es igual al producto de los valores propios (contados de acuerdo con su multiplicidad algebraica).


Algunos ejemplos de la localización del espectro de ciertas subclases de matrices normales son:
Si A es una matriz m×n con m ≤ n, y B es una matriz n×m, entonces BA tiene los mismos valores propios deAB más n − m valores propios nulos.
A cada matriz se le puede asociar una norma vectorial, que depende de la norma de su dominio, el operador norma de una matriz cuadrada es una cota superior del módulo de sus valores propios, y por tanto de su radio espectral. Esta norma está directamente relacionada con el método de las potencias para calcular el valor propio de mayor módulo. Para matrices normales, el operador norma (la norma euclídea) es el mayor módulo entre de sus valores propios.

0 comentarios:

Publicar un comentario