Multiplicidad algebraica


      La multiplicidad algebraica de un valor propio λ de A es el orden de λ como cero del polinomio característico de A; en otras palabras, si λ es una de las raíces del polinomio, es el número de factores (t − λ) en el polinomio característico tras la factorización. Una matriz n×n tiene n valores propios, contados de acuerdo con su multiplicidad algebraica, ya que su polinomio característico tiene grado n.
Un valor propio de multiplicidad algebraica 1 recibe el nombre de "valor propio simple".
Por ejemplo, se pueden encontrar exposiciones como la siguiente en artículos de teoría de matrices:
"los valores propios de una matriz A son 4,4,3,3,3,2,2,1,"
lo que significa que la multiplicidad algebraica de 4 es dos, la de 3 es tres, la de 2 es dos y la de 1 es uno. Se emplea este estilo porque la multiplicidad algebraica es la clave de muchas demostraciones matemáticas en teoría de matrices.
Anteriormente se ha definido la multiplicidad geométrica de un valor propio como la dimensión del espacio propio asociado, o el núcleo (espacio propio de los vectores propios del valor propio nulo) de λI - A. La multiplicidad algebraica también puede entenderse como una dimensión: es la dimensión del espacio propio generalizado (1.er sentido) asociado, que es el núcleo de la matriz (λI - A)k para k suficientemente grande. Es decir, es el espacio de los vectores propios generalizados (1.er sentido), donde un vector propio generalizado es cualquier vector que toma valor 0 sí λI - A se aplica suficientes veces en sucesión. Cualquier vector propio es un vector propio generalizado, así que cualquier espacio propio está contenido en el espacio propio generalizado asociado. Esto proporciona una demostración simple de que la multiplicidad geométrica es siempre menor o igual a la algebraica. El primer sentido no debe de confundirse con el problema de valores propios generalizados tal y como se muestra más adelante.

0 comentarios:

Publicar un comentario